Aller au menu Aller au contenu
Physico chemistry of solids, thin films, biotechnologies
Applications for micro & nano- technologies, energy, health ...

> Research > FM2N

New FM2N paper by D. Langley

Published on September 26, 2015
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In
Communique, News September 1, 2014

The paper "Metallic nanowire networks: effects of thermal annealing on electrical resistance" has been published in Nanoscale

You will find here the paper by Daniel Langley. Here you have the abstract:
"Metallic nanowire networks have huge potential in devices requiring transparent electrodes. This article describes how the electrical resistance of metal nanowire networks evolve under thermal annealing.
Understanding the behavior of such films is crucial for the optimization of transparent electrodes which find many applications. An in-depth investigation of silver nanowire networks under different annealing conditions provides a case study demonstrating that several mechanisms, namely local sintering and desorption of organic residues, are responsible for the reduction of the systems electrical resistance. Optimization of the annealing led to specimens with transmittance of 90% (at 550 nm) and sheet resistance of 9.5 Ω sq−1. Quantized steps in resistance were observed and a model is proposed which provides good agreement with the experimental results. In terms of thermal behavior, we demonstrate that there is a maximum thermal budget that these electrodes can tolerate due to spheroidization of the nanowires. This budget is determined by two main factors: the thermal loading and the wire diameter. This result enables the fabrication and optimization of transparent metal nanowire electrodes for solar cells, organic electronics and flexible displays."

DOI: 10.1039/c4nr04151h

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In

Date of update November 21, 2015

Univ. Grenoble Alpes