Nouvelle publication de Vincent Consonni

Le papier "Identifying and mapping the polytypes and orientation relationships in ZnO/CdSe core–shell nanowire arrays" a été publié dans Nanotechnology
    • au
Ici  vous trovuerez le papier de  Vincent Consonni
"Identifying and mapping the crystalline phases and orientation relationships on the local scale in core–shell ZnO nanowire heterostructures are of primary importance to improve the interface quality, which governs the performances of the nanoscale devices. However, this represents a major difficulty, especially when the expected polytypes exhibit very similar properties as in the case of CdSe. In the present work, we address that issue in ZnO nanowire heterostructures involving a uniform and highly conformal CdSe shell grown by molecular beam epitaxy. It is shown by x-ray diffraction and Raman spectroscopy through the occurrence of the (101̄0) and (101̄1) diffraction peaks and of the E2 low mode at 34 cm−1, respectively, that the CdSe shell is mostly crystallized into the wurtzite phase. By using automated crystal phase and orientation mapping with precession (ASTAR) in a transmission electron microscope and thus by benefiting from highly precise electron diffraction patterns, the CdSe shell is found to crystallize also into the minority zinc blende phase. The wurtzite CdSe shell is epitaxially grown on the top of ZnO nanowires, and some specific orientation relationships are mapped and revealed when grown on their vertical sidewalls. Zinc blende CdSe domains are also formed exclusively in the center of wurtzite CdSe grains located on the vertical sidewalls; both wurtzite and zinc blende CdSe crystalline phases have a strong  orientation relationship. These findings reveal that ASTAR is a powerful technique to elucidate the structural properties on the local scale and to gain a deeper  insight into their crystalline phases and orientation relationships, which is highly promising for many types of semiconducting nanowire heterostructures. "