Piezoelectric Materials & Energy Harvesting

Steven R. Anton, Ph.D.

Assistant Professor

Mechanical Engineering

Tennessee Technological University

MAT4ENERGY Workshop, Grenoble INP - Phelma MINATEC, June 16-18, 2014

Outline

- Piezoelectric Materials
- Energy Harvesting Overview
- Piezoelectric Energy Harvesting Applications
 - Self-Powered Sensors
 - MEMS Harvesters
 - Biological Harvesters
 - Fluid-Flow Harvesters
- Current Research Trends
 - Broadband and Nonlinear
 - Multifunctional Harvesters
 - Multi-Source Harvesters
 - Novel Materials
- My Current Research

Part 1: Piezoelectric Materials

Piezoelectric Transduction Phenomenon

Piezoelectric transduction works based on dipole motion in crystalline materials. Piezoelectricity allows conversion of energy from electrical to mechanical domain and vice versa (electromechanical coupling).

Direct Effect

Constitutive Equations

 $S_i = S_{ij}^E T_j + d_{ik} E_k$

$$D_{m} = d_{mj}T_{j} + \varepsilon_{mk}^{T}E_{k}$$

Converse Effect

S: Mechanical strain

 s^{E} : Elastic compliance

T: Mechanical stress

d: piezoelectric coefficient

E : Electric field

D: Electric displacement

 ε^T : Dielectric constant

MAT4ENERGY Workshop, June 16-18, 2014

Piezoelectric Materials

Most Common

PZT PVDF PM

Polyvinylidene Fluoride

Lead Magnesium Niobate-Lead Zirconate Titanate

Space Charged Polypropylene Foam

$$\rho$$
=7500 kg/m³

$$\rho$$
=1780 kg/m³

$$\rho$$
=7000 kg/m³

$$\rho$$
= 1000kg/m³

$$d_{31}$$
=-200 pC/N

$$d_{31}$$
=23 pC/N

$$d_{31}$$
=-2000 pC/N

$$d_{33}$$
=25-250 pC/N

High coupling

Low coupling

Very high coupling

Medium Coupling

Heavy, brittle

Flexible, lightweight

Heavy, very brittle

Very lightweight, Very flexible

Piezoceramic (PZT) Poling Process

Synthetic piezoceramic materials must be poled prior to exhibiting piezoelectricity.

Poling Process:

- (a) Piezoceramic material prior to poling random distribution of dipole moments
- (b) Application of poling voltage (kV) to align dipoles (also, apply heat above Curie temperature, typically done using oil bath)
- (c) Poled material with permanently aligned dipoles (some relaxation present)

Part 2: Energy Harvesting Overview

Piezoelectric Energy Harvesting

The goal of many piezoelectric energy harvesting systems is to create selfpowered wireless sensors and eliminate the requirement of battery replacement and disposal.

Advantages

- Large (usable) voltage output
- No external power source required for energy generation
- High power density
- Commercially available in various sizes/configurations

(Derived from data in Paradiso and Starner, 2005)

Piezoelectric Energy Harvesting System

Piezoelectrics are dynamic transducers and generate AC voltage output when excited. A complete energy harvesting system includes harvester and appropriate conditioning circuitry and energy storage.

Common Piezoelectric Harvester Configurations

There are several ways in which ambient vibration energy can be coupled to piezoelectric harvesters.

Resonant Design of Linear Piezoelectric Harvesters

Conventional, linear piezoelectric energy harvesting relies on the resonant behavior of the device to enhance strain input to the PZT, hence energy generation.

Linear, Resonant Cantilever

Erturk, 2009

Energy Conditioning Circuitry

AC piezo output must be rectified. Energy is typically insufficient for direct use, therefore, intermediate storage is necessary. Additionally, impedance matching is critical for piezoelectric harvesters.

Basic Energy Harvesting Circuit Components

Rectification

The first step is to rectify the AC voltage from the piezo to DC voltage.

In some cases, this can be the entire circuit, however...

MAT4ENERGY Workshop, June 16-18, 2014

DC/DC Conversion

The rectified voltage is often unsuitable for direct use with the load electronics. DC/DC conversion is, therefore, required. In the following converters, voltage is controlled by adjusting duty cycle of switch.

Buck Converter

Used to step down when piezo voltage is greater than load volatge

Boost Converter

Used to step up when piezo voltage is lower than load volatge

Buck-Boost Converter

Can be used to step up or step down

Again, this may complete the circuit, however, many systems require more advanced circuitry...

MAT4ENERGY Workshop, June 16-18, 2014

Advanced Switch-Mode Converters

The efficiency of the harvesting circuit is greatly increased when implementing advanced switching converters and impedance matching.

Synchronous Electric Charge Extraction (SECE)

Lefeuvre et al, JIMSS, 2005

Parallel-Synchronous Switch Harvesting on Inductor (SSHI)

Badel et al, JIMSS, 2005

Resistive Impedance Matching Circuit

Note: Switching is independent of oscillation frequency. It is simply based on what artificial resistance the circuit is to represent.

MAT4ENERGY Workshop, June 16-18, 2014

Part 3: Piezoelectric Energy Harvesting Applications

Piezoelectric Energy Harvesting Applications

Self-Powered Sensors

Paradiso et al, 1998

- Pioneering work in selfpowered sensors
- PVDF + PZT harvesters in shoe to power RFID tag
- 1-10 mW of power; enable RFID tag to transmit 12-bit ID code every 4-5 steps

Arms et al, 2005

- Complete sensor node includes microprocessor, memory, data logger, temp and humidity sensors, radio, and harvesting
- 2 mW @ 57 Hz, 0.1 g excitation
- Later developed commercial
 product: EH Link from LORD
 Microstrain, Inc.

- Credit card-sized self-powered sensor
- Accelerometer, pressure, temperature sensors
- 240 μW @ 67 Hz, 0.4 g input allows operation of the sensor node once every 15 minutes

Biological and Wearable Harvesters

Feenstra et al, 2008

- Piezo stack incorporated into straps of military backpack
- 0.4 mW average power during walking

Platt et al, 2005

- In-vivo harvesting by Incorporating piezoelectric stacks into total knee replacement unit
- Provide power to wireless health monitoring sensor
- 4.8 mW generated by the stacks, yielding 850 μW of regulated power

Aktakka et al, 2011

- Piezoelectric cantilevers (11mm³) fixed to a beetle
- 11.5 µW of power during tethered flight at 85 Hz flapping frequency

MAT4ENERGY Workshop, June 16-18, 2014

Piezoelectric Energy Harvesting Applications

MEMS Harvesters

Jeon *et al*, 2005

- Pioneering work in piezoelectric MEMS harvesting
- Interdigitated electrodes for d₃₃ mode operation
- 100 x 60 x 0.48 μm³
- 1.01 μ W @ 13.9 kHz, 2.56 μ m tip displacement

Shen et al, 2009

- High aspect ratio cantilever to reduce natural frequency
- ω_n below 200Hz
- 4800 x 400 x 22 μm³
- 0.32 μW @ 183.8 Hz, 0.75 g

Karami and Inman, 2011

- Novel geometry for reduction of natural frequency
- Zig-zag structure provides up to 17x reduction in natural frequency
- Experimental testing only at macro scale to-date

Fluid/Wind Flow Harvesting

Taylor et al, 2001

- Early work on fluid flow harvesting with PVDF
- Piezoelectric "eel," 24 cm long, 7.6 cm wide, and 150 μm thick
- 3.0 V for 0.5 m/s flow velocity

Myers et al, 2007

- Windmill-based piezoelectric harvester
- Three fans of 12.7 cm diameter excite two rows of 9 piezo cantilever beams
- 10 mph wind generates 5 mW

Bryant and Garcia, 2011

- Aeroelastic flutter-based harvester configuration
- 2.2 mW @ wind speed of 7.9 m/s
- Cut-in speed of 2.6 m/s

MAT4ENERGY Workshop, June 16-18, 2014

Part 4: Current Research Trends

Broadband and Nonlinear Harvesting

Traditional linear resonant harvesters suffer when excitation frequency shifts away from designed resonance of device.

Broadband Harvesters

Nonlinear Harvesters

Erturk et al, 2009

MAT4ENERGY Workshop, June 16-18, 2014

Multifunctional Harvesting

Multi-Source Harvesting

Novel Piezoelectric Materials

Single-Crystal Piezoceramics

PMN-PT Composite

Ren et al, 2006

PMN-PT Micro Cantilever

Mathers et al, 2009

•	Lead Zirconate Titanate	Lead Magnesium Niobate- Lead Zirconate Titanate
	$ ho$ =7500 kg/m 3	ρ =7000 kg/m ³
<	d_{31} =-200 pC/N	d ₃₁ =-2000 pC/N
	High coupling	Very high coupling
	Heavy, brittle	Heavy, very brittle

Piezoelectric Nanocomposites (nanowire, nanofiber)

Barium Titanate Nanocomposite Paint

Feenstra and Sodano, 2008

Single Crystal PZT Nanowire Array

Xu et al, 2010

Part 5: My Current Research

Piezoelectret Foam Energy Harvesting

Piezoelectret foam is a cellular polymer electret material with internally charged voids that form "macroscopic" dipoles allowing piezoelectric behavior

Sessler and Hillenbrand, Applied Physics Letters, 1999

- Sample Size: 15.24 x 15.24 cm
- Simple bridge rectifier circuit used to charge 1mF capacitor

- 30 min of excitation results in a voltage of 3.24 V on the capacitor
- Average power output of 2.8 μW

Piezoelectric Sensor/Harvester for In-Vivo Monitoring of Total Knee Replacement Units

Summary

Piezoelectric energy harvesting aims to convert ambient vibration energy into useful electrical energy to:

- Eliminate need for battery replacement and disposal
- Create autonomous, self-powered wireless sensors

Current research trends include *Broadband* and *Nonlinear* harvesting, *Multifunctional* harvesting, *Multi-source* harvesting, and novel *Single-crystal* and *Nanocomposite* materials

Some commercial devices available, but limited to linear, resonant harvesters which must be "tuned"

More research to be done to deal with time-varying and stochastic vibration inputs, and multifunctional/multi-source harvesting

THANK YOU

MAT4ENERGY Workshop, June 16-18, 2014