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Piezoelectric Transduction Phenomenon

Piezoelectric transduction works based on dipole motion in crystalline materials.
Piezoelectricity allows conversion of energy from electrical to mechanical domain

and vice versa (electromechanical coupling).
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S: Mechanica strain ~ s" : Elastic compliance
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Piezoelectric Materials

Most Common

PMN-PZT Single Crystal Piezoelectret Foam

/

Lead Zirconate Titanate  Polyvinylidene Fluoride Lead Magnesium Space Charged
Niobate-Lead Zirconate  Polypropylene Foam
Titanate

p=7500 kg/m3 p=1780 kg/m3 p=7000 kg/m3 p= 1000kg/m3

d;,=-200 pC/N d;,=23 pC/N d;,=-2000 pC/N d;3=25-250 pC/N

High coupling Low coupling Very high coupling Medium Coupling

Heavy, brittle Flexible, lightweight Heavy, very brittle Very lightweight,

Very flexible
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Piezoceramic (PZT) Poling Process

Synthetic piezoceramic materials must be poled prior to / s
exhibiting piezoelectricity. |

Poling Process:

(a) Piezoceramic material prior to poling - random distribution of dipole moments

(b) Application of poling voltage (kV) to align dipoles (also, apply heat above Curie temperature,
typically done using oil bath)

(c) Poled material with permanently alighed dipoles (some relaxation present)
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Piezoelectric Energy Harvesting

The goal of many piezoelectric energy harvesting systems is to create self-
powered wireless sensors and eliminate the requirement of battery replacement
and disposal.
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* No external power source
required for energy generation

* High power density

¢ Commercially available in
various sizes/configurations

Multiple Increase Since 1990
=

o ".".'5"' i 1 1 1 1 1
1890 = 1992 1994 1996 1998 2000 2002
Year

(Derived from data in Paradiso and Starner, 2005)
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Piezoelectric Energy Harvesting System

Piezoelectrics are dynamic transducers and generate AC voltage output when
excited. A complete energy harvesting system includes harvester and appropriate
conditioning circuitry and energy storage.

Voltage Output
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Common Piezoelectric Harvester Configurations

There are several ways in which ambient vibration energy can be coupled to
piezoelectric harvesters.
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Resonant Design of Linear Piezoelectric Harvesters

Conventional, linear piezoelectric energy harvesting relies on the resonant
behavior of the device to enhance strain input to the PZT, hence energy

generation.

Linear, Resonant Cantilever

PZT-5A
bimorph
cantilever

Erturk, 2009
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Energy Conditioning Circuitry

AC piezo output must be rectified. Energy is typically insufficient for direct use,
therefore, intermediate storage is necessary. Additionally, impedance matching is
critical for piezoelectric harvesters.

Basic Energy Harvesting Circuit Components
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Rectification

The first step is to rectify the AC voltage from the piezo to DC voltage.

PZT
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In some cases, this can be the entire circuit, however...
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DC/DC Conversion

The rectified voltage is often unsuitable for direct use with the load electronics.
DC/DC conversion is, therefore, required. In the following converters, voltage is
controlled by adjusting duty cycle of switch.

Buck Converter Boost Converter Buck-Boost Converter
N lA
N 1 N ™~
Supply CD N g Supply / |:§j| Supply <D E§:|
Used to step down when Used to step up when Can be used to step up or
piezo voltage is greater piezo voltage is lower step down
than load volatge than load volatge

Again, this may complete the circuit, however, many systems require more
advanced circuitry...
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Advanced Switch-Mode Converters

The efficiency of the harvesting circuit is greatly increased when implementing
advanced switching converters and impedance matching.

Synchronous Electric Parallel-Synchronous Switch Switching on
Charge Extraction (SECE) Harvesting on Inductor (SSHI) Voltage Peaks
o
H L3 -
e T AVAVAY
: / ; YAVERY
¢ éﬁ \/
Lefeuvre et al, JIMSS, 2005 Badel et al, JIMSS, 2005 % %
S

Resistive Impedance )\
Matching Circuit

Note: Switching is independent of
oscillation frequency. It is simply Rn
based on what artificial resistance

the circuit is to represent.

R T
Kong et al, JIMSS, 2010 C-|;|__
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Piezoelectric Energy Harvesting Applications

Self-Powered Sensors Biological and Wearable Harvesters
Paradiso et al, 1998

Pioneering work in self-
powered sensors

PVDF + PZT harvesters in shoe
to power RFID tag

1-10 mW of power; enable RFID
tag to transmit 12-bit ID code
every 4-5 steps

Complete sensor node includes
microprocessor, memory, data
logger, temp and humidity
sensors, radio, and harvesting
2 mW @ 57 Hz, 0.1 g excitation
Later developed commercial
product: EH Link from LORD

] Microstrain, Inc.

Piezo stack incorporated into
straps of military backpack
0.4 mW average power during
walking

In-vivo harvesting by
Incorporating piezoelectric
stacks into total knee
replacement unit

Provide power to wireless
health monitoring sensor
4.8 mW generated by the
stacks, yielding 850 pW of
regulated power

Zhu et al, 2011

Sonaors Credit card-sized self-powered
- sensor . . , ,
Accelerometer, pressure, S * Piezoelectric cantilevers
temperature sensors m'v‘ (11mm3) fixed to a beetle

240 pW @ 67 Hz, 0.4 g input  11.5uW of'power during
allows operation of the sensor i tethered flight at 85 Hz

resistive load which is connacted

Power

Generator goroner node once every 15 minutes [t ot i ot W, S i o i flapping frequency
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Piezoelectric Energy Harvesting Applications

MEMS Harvesters

Jeon et al, 2005

Shen et al, 2009

Beam covered
with top
electrode
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Pioneering work in
piezoelectric MEMS harvesting
Interdigitated electrodes for
d;; mode operation

100 x 60 x 0.48 pm3

1.01 yW @ 13.9 kHz, 2.56 pm
tip displacement

High aspect ratio cantilever to
reduce natural frequency

w,, below 200Hz

4800 x 400 x 22 pm?

0.32 y\W @ 183.8 Hz, 0.75 g

Novel geometry for reduction
of natural frequency

Zig-zag structure provides up
to 17x reduction in natural
frequency

Experimental testing only at
macro scale to-date

MAT4ENERGY Workshop, June 16-18, 2014

Fluid/Wind Flow Harvesting

Taylor et al, 2001

Early work on fluid flow
harvesting with PVDF
Piezoelectric “eel,” 24 cm
long, 7.6 cm wide, and 150 pm
thick

3.0V for 0.5 m/s flow velocity

Windmill-based piezoelectric
harvester

Three fans of 12.7 cm diameter
excite two rows of 9 piezo
cantilever beams

10 mph wind generates 5 mW

Aeroelastic flutter-based
harvester configuration
2.2 mW @ wind speed of 7.9
m/s

Cut-in speed of 2.6 m/s
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Broadband and Nonlinear Harvesting

Traditional linear resonant harvesters suffer when excitation frequency shifts
away from designed resonance of device.

Broadband Harvesters
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Multifunctional Harvesting

Self-Charging Concept

Energy Flow

F(xt)

I Piczoceramic Layer
/71 Thin Film Battery Layer
I Substrate Layer

Anton et al, 2010 PZT

Structural Piezo-Fibers

Electrode

Piezoelectric:
Material

Core Fiber
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Multi-Source Harvesting
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Novel Piezoelectric Materials

\[—PZT-5A
—PZT-5H

1+ PMN-PT(30%)
| --PMN-PT(33%)
— PMN-PZT

Single-Crystal Piezoceramics

PMN-PT Composite PMN-PT Micro Cantilever

Proof mass (PDMS)

Peak Power [legz]

1 10
Load Resistance [Q]

e
T

PMN-PT Epoxy
Ren et al, 2006

Lead Zirconate Lead Magnesium Niobate-
Titanate Lead Zirconate Titanate

p=7500 kg/m3 p=7000 kg/m3

d;,=-200 pC/N  dj,=-2000 pC/N

High coupling Very high coupling

Heavy, brittle Heavy, very brittle

Piezoelectric Nanocomposites (nanowire, nanofiber)

Barium Titanate Nanocomposite Paint Single Crystal PZT Nanowire Array

Feenstra and Sodano, 2008 Xu et al, 2010
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Piezoelectret Foam Energy Harvesting

Piezoelectret foam is a cellular polymer electret material with internally charged
voids that form “macroscopic” dipoles allowing piezoelectric behavior
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Piezoelectric Sensor/Harvester for In-Vivo Monitoring of

Total Knee Replacement Units

Simulated Load Profile

OpenSim Biomechanical Simulation

Software (Stanford University)
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Summary

Piezoelectric energy harvesting aims to convert ambient vibration
energy into useful electrical energy to:
 Eliminate need for battery replacement and disposal
 Create autonomous, self-powered wireless sensors

Current research trends include Broadband and Nonlinear
harvesting, Multifunctional harvesting, Multi-source harvesting,

and novel Single-crystal and Nanocomposite materials

Some commercial devices available, but limited to linear, resonant
harvesters which must be “tuned”

More research to be done to deal with time-varying and stochastic
vibration inputs, and multifunctional/multi-source harvesting
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