Aller au menu Aller au contenu
Grenoble INP
Synthèse et propriétés de monocristaux, de poudres, films minces ou hétérostructures

Etudes à l'interface avec la matière biologique

Soutenance de thèse de Quentin LUBART

Publié le 13 septembre 2016
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
Soutenance 12 décembre 2016
14:00 h- Amphi M001 - RDC - PHELMA
Grenoble INP - Phelma
3 parvis Louis Néel - 38000 Grenoble
Accès : TRAM B arrêt Cité internationale
Free entrance - No registration

Les protéines ERM, une interaction entre la membrane cellulaire et le cytosquelette: une approche biomimétique/ERM proteins a link between the cellular membrane and the cytoskeleton: a biomimetic approach

Lubart-Q-200.jpg

Lubart-Q-200.jpg

Thèse de Quentin LUBART

Mots-clés/Keywords:

Ezrine-Radixine-Moésine, phosphoinositides, PIP2, interactions protéine-lipide, membrane lipidique biomimétique, protéine virale Gag, cytosquelette/Ezrin-Radixin-Moesin, phosphoinositides, PIP2, protein/lipid interactions, biomimetic lipid membrane, Gag viral protein, cytoskeleton

Directeurs de thèse : Prof. C.PICART - Grenoble INP, LMGP, équipe IMBM et Dr L.BLANCHOIN -Institut de Biosciences et Biotechnologies de Grenoble (BIG), CEA Grenoble


cliquer pour voir la liste des membres du jury/click here to see the jury members

Résumé :

"Les protéines ERMs (Ezrine, radixine et moésine) jouent un rôle central in cellulo, dans de nombreux processus cellulaires tels que les infections, la migration et la division cellulaire. Parmi celles-ci, la moésine est plus particulièrement impliquée dans la formation de la synapse immunologique, l’infection virale et bactérienne, et les métastases cancéreuses. D’un point de vue structural, les ERM peuvent être en conformation inactive (replies sur elles-mêmes) ou actives (ouvertes), ce qui permet leur interaction a la fois avec les constituants du cytosquelette (actine et tubuline) via leur domaine C-terminal et la membrane plasmique via leur domaine FERM. La liaison a la membrane plasmique se fait principalement et spécifiquement via un lipide de la famille des phosphoinositides, le phosphatidyl 4,5 bisphosphate (PIP2). De plus, les protéines peuvent être phosphorylées, ce qui contribue à leur ouverture structurale. Cependant, le rôle de la phosphorylation sur les interactions ERM/membrane et ERM/cytosquelette, bien que beaucoup étudié in cellulo, est peu compris au niveau moléculaire. Le but de cette thèse est précisément d’étudier, au niveau moléculaire et à l’aide de systèmes biomimétiques, les interactions entre des protéines recombinantes et des membranes biomimétiques contenant du PIP2. Pour cela, nous avons mis au point des membranes lipidiques sous forme de vésicules unilamellaires (petites ou larges) et de bicouches lipidiques supportées, qui permettent de caractériser les interactions entre protéines et membranes par des techniques biophysiques complémentaires, notamment la cosédimentation quantitative, la microscopie et spectroscopie de fluorescence, et la microbalance à cristal de quartz. Dans une première partie, nous avons étudié le rôle de la double phosphorylation de la moésine (réalisée par mutation sur site spécifique) sur les interactions moésine/membrane biomimétique, en comparaison de la protéine sauvage, les protéines recombinantes et les mutants ayant été produites et purifiées au laboratoire. Nos résultats mettent en évidence une interaction spécifique et coopérative pour le double mutant phosphomimétique alors que cette interaction est simple dans le cas de la protéine sauvage. Dans une seconde partie, nous avons employé les bicouches lipidiques supportées contenant le PIP2 pour étudier les mécanismes molécules d’adsorption de la protéine virale Gag et de ses mutants. Les méthodologies développées dans ce travail de thèse ouvrent des perspectives en biophysique moléculaires car elles sont facilement transposables à l’étude d’autres protéines sur des membranes lipidiques modèles contenant des phosphoinositides.

 

Abstract

ERM (ezrin, radixin, moesin) proteins play a central role in cellulo in a large number of physiological and pathological processes, including cell infection, migration and cell division. Among the ERMs, moesin is particularly involved in the formation of the immunological synapse, viral and bacterial infection, and cancer metastasis. From a structural point of view, ERMs can be in inactive (closed) conformation or active (open), which enable them to interact on one side with the cytoskeleton (actin and tubulin) via their C-terminal domain and on the other side with the plasma membrane via their FERM domain. Binding to the plasma membrane is mediated via a specific lipid of the phosphoinositide family, the phosphatidylinositol(4,5)bisphosphate (PIP2). In addition, ERM can be phosphorylated, which contribute to their structural opening. To date, the role of the phosphorylation in ERM/membrane and ERM/cytoskeleton interactions, although widely studied in cellulo, remains poorly understood at the molecular level.
The aim of this PhD thesis is precisely to study, at the molecular level and using biomimetic systems, interactions between recombinant proteins and biomimetic membranes containing PIP2. To this end, we have engineered lipid membranes in the form of large and small unilamellar vesicles and supported lipid bilayers. These biomimetic membranes are used to characterize interactions between proteins and membranes by complementary biophysical techniques, notably quantitative cosedimentation, fluorescence microscopy and spectroscopy, and quartz crystal microbalance with dissipation monitoring. In a first part, we studied the role of double phosphorylation on moesin, achieved via a site-specific mutation on threonine residues, on moesin/biomimetic membrane interactions, in comparison to the wild type protein. The recombinant proteins and mutants were produced in our laboratory.
Our results show that there is a specific and cooperative interaction for the double phosphomimetic mutant while interactions is 1:1 in the case of the wild type protein. In a second part, we used supported lipid bilayers containing PIP2 to study the molecular adsorption mechanism of the viral protein Gag and of its mutants. The methodologies that were developed in this work open perspectives in molecular biophysics since they are easily adaptable to other proteins on model lipid membranes containing phosphoinositides

Dr Marta Bally - Applied Physics, division of biological Physics, Chalmers University of Technology , Gothenburg- Suède - Examinateur
Prof Erik Reimhult - Institute for Biologically inspired materials, Departement of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna - Autriche  - Examinateur
Dr Astrid Walrant - Laboratoire des Biomolécules, UMR 7203, Université Pierre et Marie Curie, Paris - France - Examinateur
Dr Cyril Favard - Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, UMR 5236, CNRS, Montpellier - France - Examinateur
Dr Laurence Salomé, Institut de Phamacologie et Biologie Structurale, UMR 5089, CNRS , Université de Toulouse - Paul Sabatier - France - Rapporteur
Prof Agnès  Girard-Egrot -Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246 , CNRS , Lyon - France - Rapporteur
Dr Laurent.Blanchoin - Institut de Biosciences et Biotechnologies de Grenoble (BIG) - CEA Grenoble - France - Co-Directeur de thèse
Prof Catherine Picart - LMGP - CNRS - Grenoble INP Minatec - Grenoble - France -Directeur de thèse

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Rédigé par Michele San Martin

mise à jour le 16 mars 2017

  • Tutelle CNRS
  • Tutelle Grenoble INP
Communauté Université Grenoble Alpes